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Abstract. We show that the rigid spherically symmetric model of the electron is causal in 
the sense that ( i )  an external force acting at a time f does not influence the motion before 
I ,  and ( i i )  the motion before a certain time and the system of forces determine uniquely 
the motion after f , .  We also make some comments concening the runaway and pre- 
acceleration phenomena in connection with previous results. We show that the non- 
uniqueness of the general solution, as well as the apparent existence of pre-acceleration 
for certain values of the radius, are due to the existence of non-trivial solutions for the 
free case. 

1. Introduction 

The use of extended models for the electron in classical electrodynamics can be traced 
back to the very origin of the theory (see, for instance, Erber 1961, Hirosige 1965, 
Lorentz 1952, Miller 1976). However, the general tendency this century in physics has 
caused these models to be unknown to most physicists. Indeed, although several papers 
on this subject have been published this century, we can say that general results are 
rather scarce. Undoubtedly, the most general study can be found in Nodvik (1964). 

Apart from this, the analyses appearing in the literature have been restricted to 
spherically symmetric charge distributions and consider separately either translational 
(Alvarez-Estrada and Ros Martinez 1981, Blanco et a1 1986, Bohm and Weinstein 
1948, Caldirola 1956, de la Peiia et a1 1982, Fransa er a1 1978, Grandy and Aghazadeh 
1982, Kaup 1966, Levine et a1 1977, Markov 1946, Moniz and Sharp 1977) or rotational 
non-relativistic motion (Daboul 1975, Daboul and Jensen 1973, JimCnez et a1 1985, 
Rafiada and Vizquez 1984). Furthermore, most works deal with one particular charge 
distribution. In this context we can say that the results existing for these models are 
rather weak. For instance, the problem of runaways is generally restricted to considering 
exponential solutions (Blanco er a1 1986, Bohm and Weinstein 1948, de la Peiia et a1 
1982, FranGa et a1 1978, Grandy and Aghazadeh 1982, Moniz and Sharp 1977). Perhaps 
the most general result for this problem is due to Kaup (1966) which gives sufficient 
conditions for the non-existence of general runaway behaviour. However, this analysis 
is restrictqd to forces not dependent on position and velocity. Another interesting 
point is the pre-acceleration phenomenon that has been considered in some papers 
(Blanco et a1 1986, FranGa et a1 1978, Kaup 1966), a new consideration of which 
appears io the present paper, already described in Blanco et a1 (1986) for a particular 
(Yukawa-type) charge distribution. A question that has not been studied in the 
literature is the unicity of solutions starting from a given time. This problem, which 
is very easily solved for the Yukawa case (Blanco et a1 1986), is solved in the present 
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paper for almost any physically reasonable charge distribution. Finally, one important 
result for the free case with rather general conditions can be found in Alvarez-Estrada 
and Ros Martinez (1981) and slightly generalised in Blanco et a1 (1986). 

All these points are clearly related to the problem of causality which is the theme 
of the present paper. Our aim is to clarify some of the abovementioned aspects for 
the case of non-relativistic translational motion of a rigid spherically symmetric charge. 

After explaining the model and some of its preliminary characteristics in § 2, we 
show in § 3 our main result: the uniqueness of solutions starting from a finite time. 
Section 4 is devoted to presenting the actual knowledge on the solutions of the 
homogeneous equation . In § 5 we analyse in detail the problem of pre-acceleration 
in order to clarify previous results (de la Peia et a1 1982, Franga et a1 1978). We also 
make a few comments on the runaway behaviour. 

2. The model 

If e p ( r )  denotes the charge density as a function of the distance to the centre of the 
charge we consider the following new functions: 

H ( t ) = -  32T2e2 lox dw wp^’(w) sin wt 
3 c3 

( 2 . 2 ~ )  

= b e 2 [  d 3 6 p ( m r +  51) Irl= ct. (2.26) I 
Note that 6, the Fourier transform of p, is also spherically symmetric. 

If the charge is subjected to an external force F(r,  t ) ,  its motion is ruled by the 
following integrodifferential equation (de la Peiia et a1 1982, Franga et a1 1978, Kaup 
1966): 

where 
which 

mr( t )  = Fe, - dt’ H( t - t ’ ) [  r (  t ’ )  - i( t ) ]  I:= 
r is the position of the centre of the charge, m is the 
turns out to be 

m = mo+ me 

mo being the mechanical mass and me the electromagnetic 
the effect of the external force upon the charge distribution. 
to an electric field, we have 

F d r ,  t )  = d 3 t p ( 6 ) F ( r + t ,  t ) .  

(2.3) 

observable electron mass 

(2.4) 
mass, and Fe, represents 
For example, if F is due 

For most purposes F is such that its variation along the dimensions of the charge 

Fer‘: F. (2.6) 
However, this is not always necessary as long as both functions turn out to depend 

on r and f .  Moreover, important cases include rapidly varying fields (Blanco et a1 
1986) and then care must be taken about the approximation (2.6). 

can be taken as negligible and we can make the approximation 
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As concerns equation ( 2 . 3 ) ,  it is worth noticing that only the non-relativistic and 

Introducing the following quantities: 
dipolar approximations are considered (for more details see Franga et a1 ( 1 9 8 4 ) ) .  

we can write 

r ( t ) = - -  dt ’  y ( t - t ’ ) L ‘ ( t ’ ) .  2: Sr, 
It is convenient to define 

6m = I,‘ H ( t )  d t  ( 2 . 1 0 )  

(2 .11)  

whence one readily verifies the following relations: 
am =$me ( 2 . 1 2 ~ )  

m = m l ( l  + E )  ( 2 . 1 2 b )  

lox t y (  t )  d t  = 2 e 2 / 3 m l c 3  = ( 1  + E ) T ~  ( 2 . 1 2 c )  

r0 having its usual meaning. 
Some preliminary features of the model deserve attention. It is clear that, for a 

given family of charge distributions containing a radius parameter, the electrostatic 
energy m, grows with decreasing value of this parameter. In other words, denoting 
the radius of the electron by re ,  we can say that, if re + 00, then me + 0, and if re + 0, 
me + CO. 

Consequently, according to ( 2 . 7 ) ,  (2 .10)  and ( 2 . 1 2 ~ 1 )  and taking into account that 
m has a well defined value, we easily conclude that m, takes values between -cc for 
re+ 0 ( m1 - -6m) and m for re + 00. We can select two characteristic radii, namely a 
first one that we call the critical radius, r,,, for which 

m = $ m e ( r c r ) w m , ( r c r )  = O  ( 2 . 1 3 )  

and a second one, r u ,  satisfying 

& ( T u )  = l G f m e ( r u )  = m. (2 .14)  

While the interest of the latter will appear clear in the following sections, some 
peculiarities of the former are already obvious. According to the above comments, it 
is clear from the definition of rcr and equations ( 2 . 7 ) ,  (2 .10)  and ( 2 . 1 2 ~ )  that m,  is 
positive for re > rcr and negative for re < r,, . 

Now, if we consider that the external force sets in at to and the electron has a 
constant velocity for t < t o ,  the equation of motion (2.9) is written 

L ‘ = O  t < to ( 2 . 1 5 ~ )  

(2 .156)  
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For times larger than but very close to t o ,  we see that the motion is ruled by the 

r - F l m , .  (2.16) 

This means that m ,  represents the initial inertia to the motion. Two conclusions 
arise from this. First, if the radius has a value very close to the critical one, m ,  is very 
small and the charge can attain a high speed quickly, because of which the non- 
relativistic approximation can be erroneous. Second, if re < rcr, the initial inertia m ,  
is negative. We must point out that this behaviour can be considered exact at the first 
instants, and  not a consequence of the approximations, for a rigid spherically symmetric 
distribution (see FranGa er a1 (1978) for details concerning the derivation of equation 
(2.3)). This is a very surprising result that escapes any physical intuition. Obviously 
it demands a deeper specific analysis which will be the subject of a future work. 

The value of the critical radius depends on the model. However, an estimation 
can be made. If we admit that the distribution of the charge is rather uniform within 
a volume of radius r e ,  we can estimate 

first term on the R H S  of equation (2.156), i.e. 

e 2  1 
me--- -. 

2c' re 

Consequently, from ( 2 . 1 2 ~ )  and (2.13) we obtain 

(2.17) 

(2.18) 

In other words, the critical radius is, in general, of the order of the so-called classical 
radius. 

I also want to draw attention to the re dependence of the parameter E.  It is easy 
to see from the behaviour of m ,  and (2.12b) that F is positive for re> r,, with values 
between 0 for re + a? and +cc for r, + rcr+, and, for re < rcr, E < - 1 going to -E for re + rcr. 

To end this section, a point concerning the charge model should be pointed out. 
A disagreement in the equation of motion can be found in some papers (see, e.g., 
Bohm and Weinstein 1948), in that an amount -$me is missing in the computation of 
the mass. As a consequence, the equation of motion is written like (2.9) but with m, 
instead of m, in equations (2.8) and (2.9). In this situation m = m,+;m, and the 
features appearing in our model for m ,  < 0 correspond in these other models to m, < 0. 
That is, the critical radius for these models is the minimum for which m, is non-negative. 
As m, is the mechanical mass, if we admit that it cannot be negative we arrive at the 
conclusion that in these models the radius is never smaller than the critical one. O n  
the contrary, in our model, m, = m ,  +$me whence it is possible to have m ,  < 0 with 
m,> 0, and then radii smaller than the critical value are allowed. This will be important 
in the results of the present paper. 

3. Main result: uniqueness of the solution starting from a finite time 

In  the following we consider that the force is switched on at a time t = 0. The problem 
of the unicity of solutions requires to be analysed for both t < 0 and t > 0. As we shall 
see, the multiplicity of solutions is due, in general, to the former. To begin this analysis 
we devote this section to prove that, in very general conditions, the solution for t > 0 
is unique. Specifically, we shall prove the following. 
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Theorem. If the following conditions are satisfied: 
( i )  r( t )  is known for t < 0, 
(ii) + ( t )  exists and is bounded at least in an interval to the right of the origin, 

(iii) the external force F(r ,  U, t ) / m ,  is a continuous function of its arguments with 
first space and velocity derivatives, except, perhaps, in isolated points, and such that 
in every bounded phase-space interval such derivatives are all bounded, 
then the solution r( t )  of equation ( 2 . 9 )  for t > 0 is unique. 

[O, t o ) ,  and 

Note that there is no restriction upon the values of the radius, with the exception of rcr .  
The first condition reduces the problem of unicity to the solutions of the 

homogeneous equation. The second one is shown in the appendix to be valid for very 
general and physically reasonable charge distributions. Finally, condition (iii) may be 
considered necessary for every physical force. Consequently, we deduce that the three 
conditions are completely general from a physical point of view. 

Proof: We begin by writing the equation of motion in the form 

i ( t ) = f ( r ,  t )+v ( t ) -  y( t - t ’ ) i ( r ’ )dr ‘  lo1 
where 

f(r, t )  = F(r ,  t ) / w  ( 3 . 2 ~ )  

( 3 . 2 b )  

Since only the motion at negative values of the time contributes in 9, this is a 

Let us now suppose that there exists a time to and two solutions of ( 3 , 1 ) ,  r , ( t )  and 

( 3 . 3 ~ )  

( 3 . 3 6 )  

We may assume without loss of generality that in a first time interval [ t o ,  t l ) ,  both 

Now let 

known function of the time. 

r2( t ) ,  such that 

U (  t )  = r2( t )  - r l (  t )  = 0 

U (  t )  = r2( t )  - rl( t )  # 0 

for t s to 

for t > to .  

lul and 121 are strictly increasing functions. 

I ,  ( t ) = r, t )  -f( r, ( t ) ,  t )  - 9 ( t )  + y (  t - t ’ )  it ( t ’ )  dt‘  i =  1 , 2  ( 3 . 4 )  5.: 
and 

O = B =  jr: dt ( t l - t ) [Z2( t ) - I l ( t ) l .  4 r )  

\ 

r 

+ ~ , o d ~ ’ y ( t - t ’ ) u ( t ’ ) ~  ri(t)dr’ ( 3 . 5 )  
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with 

f; =f(ri(f), t )  i = l , 2  

Elementary algebra yields 

0 E B = t [ ‘I d t U’( t )  + [ “ d t  [ d 1’ +( t - f ‘) U (  t ) . U ( r’)(  t ,  - t ) 
10 10 10 

+ [ d t  ( t ,  - t ) U (  1 )  a {fi -fi}. 
10 

(3.6) 

Now, taking into account condition (ii) and the increasing behaviour of IU(  t ) l ,  and 
choosing t ,  such that I t ,  - to/ s t , ,  we can write 

and then 

It’ d t  [ ‘ d t  + ( t -  r ’ ) U ( t )  . U ( t ’ ) ( t , -  t ) 3  - sup I + ( r ) l  1 U ’ ( t )  dt  ( t ,  -to)’ .  (3.8) 

As concerns the last term of (3.6), if we call V, a bounded phase-space interval 
containing both (r( to), U( t o ) )  and the paths ( r l (  t ) ,  U,( t ) )  and (rz( t ) ,  u2( t ) )  between to 
and t , ,  we can write 

11 

t o  10 1€[0,7,  -101 10 

(r,, U,) being a particular point in V,. If M and M ’  denote bounds for, respectively, 
all aJ;/axj and aJ;/avj in V,, we obtain 

(3.10) 

because IU(  is an increasing function. Then 

~ j l ~ d t ( t l - t ) U ( t )  . { f , - J J I  ~ 9 [ M ( r , - t , ) 2 + M ’ ( t , - t , ) l  (3.12) 
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and consequently 

Now, introducing (3.8) and (3.13) into (3.6) we obtain 

O = B a f  " dt  U'( t )  
lo 

x 1-2 SUP J P ( t ) l ( t l -  t o ) ' -  18{M(tl - to)'+ M'( t1-  t o ) }  . (3.14) 

Obviously we may choose t l  such that ( t l  - to) is sufficiently small so that the RHS 
of (3.14) is strictly positive. Consequently it is necessary that us0 in [ t o ,  t l ) ,  in 
contradiction with our assumption that U # 0 starting from to. This ends the proof of 
the theorem. 

[ [O.f, - 101 1 

According to this theorem, if we know r (  t )  for r < 0, the subsequent trajectory is 
determined by (2.9). However, this equation, written now as (3.1), clearly depends on 
r (  t )  for t < 0 through the term v( t ) .  It is obvious that r = 0 is a solutuion of (2.9) if 
F = O ,  and then v ( t )  would be zero in (3.1). However, if other solutions of the 
homogeneous version of (3.1) exist, other functions q ( t )  will have to be considered. 

This means that the uniqueness of solutions of (2.9) solely depends of the uniqueness 
of solutions a(  t )  for its homogeneous version 

(3.15) 

a ( ? )  being the acceleration. 
A final remark is necessary. If we admit that the force is turned on at t = -m, the 

foregoing result does not solve the problem of unicity. However, physical intuition 
makes us hope that in this case the solutions are related to the asymptotic behaviour 
of those obtained when the force sets in at a finite time and, consequently, the solution 
of the unicity problem would again be related to the analysis of the homogenous 
equation, equation (3.15). 

Nevertheless this case requires a specific study that we do not develop in this article. 

4. Solutions of the homogenous equation 

According to the preceding section, the uniqueness problem for equation (2.3) is in 
fact the one corresponding to its homogeneous version, equation (3.1 5). Although not 
complete, a general answer to this has already been given. 

On the one hand, it has recently (Blanco et a1 1986) been proven that if the sign 
of y( t )  is constant, for \ E [  c 1, i.e. for re> rut  no solutions a ( t )  that are bounded at 
t + -CO exist, except the trivial one. (This result slightly generalises an older one 
(Alvarez-Estrada and Ros Martinez 1981) which only considers solutions with vanishing 
acceleration at t + -CO.) 

On the other hand, some non-trivial solutions of (3.15) have often been found in 
the literature for I E ~  > 1, i.e. for re< ru (see for instance, Blanco et a1 1986, Franga et 
a1 1978, Moniz and Sharp 1977). Obviously the existence of these solutions is not 
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general and depends on the charge distribution. The solutions mentioned are of 
exponential type, e'". For them we can say the following. 

(a) Only solutions with either real ( p  E R )  or purely imaginary (ip E R )  exponents 
exist. 

( 6 )  In the first case there are no solutions if E > 0, i.e. if re> rcr .  
(c)  The other case gives rise to so-called self-oscillations and is possible for re < ru,  

pI(ip) = 0 ( 4 . 1 ~ )  

if the two following conditions are satisfied (ip E R):  

u2 
1 + 1 6 ~ ~ ~ 0 ( 1 + ~ ) ~ ~  du- p12(w) = 0 (4.lb) 

(where VP denotes the principal value). 
Nevertheless, it is clear that all these results concerning the homogeneous equation 

only give a partial answer to the problem of the general solution of (3.15). For instance, 
it is not known whether other solutions that are not linear combinations of the 
exponentials above considered are possible. This point will not be considered further 
in the present paper and will be the subject of future work. Here we seek to call 
attention to the fact that the most general solution of (3.15) has not yet been given. 

5. Pre-acceleration and runaways 

In this section we seek to clarify a few points concerning these two phenomena. 

5.1. Runaways 

The behaviour of the charge obviously depends on the sort of force acting upon it. 
Thus, if such a force continuously gives energy to the particle, it will certainly display 
a runaway behaviour. This kind of motion is pathological only when the force cannot 
give such an amount of energy to the charge. This is why it is usual to restrict the 
search for such an undesirable runaway behaviour to the two following general 
situations: 

(i)  the motion after the external force is turned off, and 
(ii) the motion under a conservative force field. 
We find an analysis of the former only in Kaup (1966). However, the proof displayed 

in this work specifically uses the motion for t < 0 as produced by a position-independent 
force. Consequently, the problem of runaways is not solved in general. The reason 
why we consider this phenomenon appears in connection with the other problem of 
this section. 

5.2. Pre-acceleration 

To analyse this problem we assume that the force is turned on at f = 0. The equation 
of motion now becomes 

t < O  

t > O  

( 5 . 1 ~ )  

(5.16) 
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where t # J ( t ) ,  given by 

t # J ( t ) = - I ; =  y( t - t ’ ) r ( t ’ )d t ’  

carries the effect of memory due  to the motion before t = 0. 
It is trivial from (5.la, b )  to see that the solution for t < 0, if it exists, is independent 

of the force. Moreover, if F is only time dependent, and  admits a Laplace transform, 
we may write the solution, at t > 0, as 

i.‘(t)= d t ’ [ t # J ( t ’ ) + F ( t ‘ ) ] X ( t - t ‘ )  16 
with x ( t )  given by 

where f ( z )  stands for the Laplace transform off ;  

f(z) = low d t  e-’tf(t) 

(5 .3)  

(5.4) 

( 5 . 5 )  

and C denotes a vertical line in the complex plane which lies to the right of rcr the 
abscissa of convergence of (@+ &)/(1+ 7). It is easy to see that vC is finite. Firstly, 
we have assumed that F admits a Laplace transform. Secondly, &(z )  exists even for 
Re z = O  if we assume a ( t )  to be bounded at  t +  -cc (which is physically reasonable) 
because then t#J( t )  decreases with time in a similar way to y( t ) .  Finally, for Re z big 
enough zeros of 1 + 7 cannot exist. This is due to the fact that 7 tends to zero as 
Re z + CO, and 

I ~ ( Z ) \ S  ?(Re z).  (5.6) 

Consequently, U, is finite. Now, if we close the contour of integration to the right of 
the complex plane for t < 0, it is easy to obtain 

t < O J X (  t )  = 0 (5 .7 )  

and then equation (5 .3)  becomes 

i‘( t )  = d t ’  [ t#J ( 1‘) + F (  t ’ ) ] x (  t - t ’ )  Io‘ ( 5 . 8 )  

which shows that i ( t )  is due only to the force at times prior to t .  
Consequently we can say that our model does not show pre-acceleration, 
This result seems to be in contradiction to statements made by FranGa et a1 (1978)  

and de  la Peiia et a1 (1982) where the phenomenon of pre-acceleration is claimed to 
exist for radii sufficiently small. We shall show that our  disagreement in fact is a matter 
of interpretation. 

Let us consider a time-dependent force F (  t )  that sets in at t = 0. If we look for 
the solution using the Fourier transform we obtain 

r( t )  = ro( t )  + dt’ F (  t ’ )G(  t - t ’ )  r (5 .9)  
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where to is a solution of the homogeneous equation, 

(5.10) 

and 
a 

?o(p) = y o ( t )  e"' d t  = y ( t )  elp' d t  = f(-ip), ( 5 . 1 1 )  

This is the method followed in the aforementioned papers. However, it must be 
pointed out that (5.9) is valid only if 1 + ?o(p) does not have zeros on the real axis. 
Otherwise, a few changes have to be introduced, but the analysis is similar to the 
following. Let us then assume that (5.10) is valid. The authors of the quoted papers 
take to= 0. The following step is now the analysis of G( t ) :  pre-acceleration (acausality) 
exists if and  only if G ( t )  # 0 for t < 0-as is easily seen in (5.9)-i.e. if 1 + qo(p) has 
zeros on the upper half-plane. Using ( 5 . 1 1 )  this means that l + f ( p )  has zeros for 
R e p  > 0. However, an  analysis similar to that used by de  la Peiia er a1 (1982) shows 
that this is only possible if m 1  < 0 and Im p = 0, i.e. the zeros of ( 1  + f(  p ) )  with positive 
real part, if any, lie on the real axis. Consequently, we conclude that for m1 < 0, i.e. 
re < rcr, pre-acceleration exists. 

However, (5.9) with the condition t o = O  is not a general solution of the motion, 
but a particular one. The point is that, as we shall show in the following, the part of 
G( t )  that presumably gives rise to the pre-acceleration in fact gives rise to a solution 
of the homogeneous equation. To see this note that, as f ( p )  is an  analytic function 
for R e p  > 0, the zeros of 1 + q0(p)  are isolated points. 

Furthermore, for the reason mentioned in relation to (5.6), all zeros lie in a bounded 
interval and then there are a finite number of them. Finally, these zeros are of order 
1 ,  i.e. ? & ( p )  # 0. To see this, note that 

?A(p) = -if'(-ip) (5.12) 

L loX 

and for the zeros, p, = iA, with A, > 0, we have 

?b(iA,) = -iT'(A,) = i d t  y(  t )  J1: (5.13) 

and the last integral is strictly positive. 
Going back to (5.10), all statements made so far amount to saying that there are 

a finite number of simple poles with Im p > 0 all on the imaginary axis. Now we 
consider a rectangle C in the complex plane with vertices - M, M, M + iP, - M + iP, 
P being such that all zeros of 1 + T0(p)  lie inside the rectangle. We now integrate the 
integrand in (5.10) over C. The integral over the vertical lines goes to zero when 
M++a7. To see this, note that ?o (p ,+ ip2 )  goes to zero if pl+a7. Then V e >  
0 3po/ VpI  > po, (qO(pl +ip2) l  < e and therefore 

(5.14) 



Classical extended charge and causality 5895 

Consequently we may write, calling C, the horizontal upper side of the rectangle, 

G( t )  = Go( t )  + i KJ e")' 
I 

where 

and the K, are the residues of ( 1  + ?o( p ) ) - '  in each pole A,, 

1 -- - 1 K .  = 
' ?h(w)/F=iAJ -i?'(Aj)' 

(5.16) 

(5.17) 

(5 .18 )  

The function G,(t) is now a causal function, i.e. t<O+Go(t) = O .  This is clear 
because, by construction, there are no poles in the half-plane over C , .  

From (5.16)-(5.18), equation (5.9) can be written 

r (  t )  = io( t )  + c M, e")' t < O  
J 

rr 

( 5 . 1 9 ~ )  

r ( t ) = r , ( t ) + z  M, e")'- dt'F(t ' )Go(t-t ' )  t > O  (5.19b) 
J Jo 

where 

(5.20) 

The crucial point is that all the exponentials e")' are solutions of the homogeneous 

(5.21) 

We see now that choosing to( t )  = 0 defines a particular, but not a general, solution 
for the motion. However, there is nothing in the model that prescribes such a choice. 
In consequence, the model does not show pre-acceleration but, for m,<0,  an  
'anomalous' indetermination of solutions for the free case instead. (Recall that this 
indetermination arises in the homogeneous equation.) 

There is an  interesting relation between the behaviour before t = 0 and the behaviour 
for t --* CO which reminds us of the LD equation when all its solutions are considered. 
To see it, let us suppose that F(t) is turned off at t = 1 , .  We have, from (5.9) and (5.19a), 

equation, which can be seen by substitution and taking into account that 

1 + ?(A,) = 0. 

r (  t )  = io( t )  + c M, e")' t < O  
J 

dt' F (  t')G( t - t ' )  t > 0 .  

( 5 . 2 2 ~ )  

(5.226) 

For t > t ,  > t '  in the last integral G can be calculated from (5.10) closing the contour 
of integration through the lower half-plane. Consequently G( t )  is bounded and that 
term does not show runaway behaviour. However, the total solution depends on the 
determination of i , ( t ) .  What we want to exhibit here is that if one prescribes r o = O ,  
then the solution does not show runaway behaviour but it shows pre-acceleration. 
However, we can eliminate the latter, choosing 

io( t )  = -c MI e"!' 
: 

(5.23) 
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but then i' displays runaway behaviour. Finally, both phenomena could appear if a 
different choice of r o ( t )  is made. 

We conclude this section by noting that this indetermination, which appears when 
the radius of the charge is sm.aller than the critical radius, seems to us to be pathological 
and undesirable and consequently a deeper analysis of this problem seems necessary. 

6. Conclusions and discussion 

We have shown that the model of extended charge we have analysed is essentially 
causal: on the one hand the motion before a certain time to and the system of forces 
uniquely determine the motion after to;  on the other hand the force at a time t ,  
influences the motion only at posterior times t > t ,  , Moreover, this is true for any 
value of the radius of the charge. 

However, some anomalous behaviour is detected if the radius is not larger than a 
certain value ru, While for r > ru,  the solution is unique for each value of the position 
and velocity at the time when the force is turned on, for r s ru there is indetermination 
in the solution due to an  indetermination in the absence of a force, i.e. for the 
homogeneous equation. Nevertheless, the general solutions to this have not been 
studied up  to now. Only some particular solutions, of the form epr, are known. The 
question arises whether these are the only possible solutions. 

Another open problem is that of runaway behaviour. This is partially related to 
the solutions of the homogeneous equation. In this case also, only partial results are 
known. 

The non-generality of all these results prevents us from giving a complete interpreta- 
tion of the model. We intend to devote future work to these subjects. 

Finally, we must recall the pathological behaviour at the first instants of the action 
of the force if r < rcr(<ru),  where the initial inertia turns out to be negative. This 
problem deserves special attention, which it has not received up  to now. 

Appendix 

We want to show that for very general conditions, + ( t )  exists and is bounded. We 
shall assume the following conditions: 

( i )  There exists the limit 

L =  lim r p ( r ) .  (A1 1 
r -Ot  

(ii) d ( rp ( r ) ) /d r  is absolutely integrable in every finite or infinite interval. 
The first condition is in fact weaker than what is expected from a real charge 

The second condition is 
distribution. In a realistic case p should be finite at r = 0 and, moreover, p ' ( 0 )  = 0. 

where U and b could be CO. This condition is fulfilled, for instance, by a charge density 
which is piecewise differentiable and monotonically decreasing for r sufficiently large. 
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To see this, let R be such that for r > R p’ < 0. Then with b > R 

Jab l p ( r ) + r p f ( r ) l  d r <  Jab p ( r )  d r +  JaR Irp’(r)j dr-  r p ‘ ( r )  dr. 

It is immediate to see that all these integrals are finite even for b = 03. 

However, it is not clear to what extent condition (ii)  is necessary, but we have the 
impression that it is not. Obviously, in this case the analysis should be different. 

Let us now prove that i. exists and is bounded. For this we study first the asymptotic 
behaviour of $ ( w ) .  From its definition, expression (2.1), and taking into account the 
properties of p, elementary algebra yields 

(A3) J: 

$ ( U )  = (2 /~)”’ ( l /k) f (k) /k=w/c  
with 

f ( k )  = Joz d r  r p ( r )  sin kr. 

Let us consider the asymptotic behaviour of f ( k ) .  We write it as 

cos k r ( r p ’ + p ) d r  

=L+: [omcos k r ( r p ’ + p )  dr. 
k k  

Now 

Consequently, when k +CO, f( k )  behaves at most as 1/ k. 
lim kf( k )  < m 
k - E  

and from (A4) p*(w) behaves at most as l /w2,  

lim w ’ $ ( w )  < W .  
w - m  

Going now to the function y ( t )  
X 

y (  t )  = constant x 1 dw up*’ sin wt 
J o  

from (A9) it results that 

Joe w2p*’ (w)  dw < m 

and consequently the theorems of 
r =  

the analysis enable us to write 

y(  t )  = constant x J w’p*’ (w)  cos w t  dw. 
0 

Moreover 

l y ( t ) l s  Iconstant1 w’p*’(w) dw = l i . (O) l  

for all t. 
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